If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50=16x^2
We move all terms to the left:
50-(16x^2)=0
a = -16; b = 0; c = +50;
Δ = b2-4ac
Δ = 02-4·(-16)·50
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*-16}=\frac{0-40\sqrt{2}}{-32} =-\frac{40\sqrt{2}}{-32} =-\frac{5\sqrt{2}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*-16}=\frac{0+40\sqrt{2}}{-32} =\frac{40\sqrt{2}}{-32} =\frac{5\sqrt{2}}{-4} $
| 4/5x+3/4=5/2x-1 | | 5=(9n-4) | | Y=7a,a=3 | | -8+7b=69 | | 4x^2+12x-45=0 | | -38=4n-8-(-3n)+11 | | 130=42=p | | Y=8d | | 3(4x-4)=-4x-12 | | 5(4-3x)=8(3x+17) | | 8(2n-3)=24 | | -2=(9+6d) | | y2+5=8y | | 3(2k-1)=5+4k | | 2y-23=5y=12 | | 3x=2x+50+18 | | 23z=18. | | (-5x+4)/7=8 | | 8g+17-5g-10=13 | | Y=10-c,c=8 | | 3x+3=-17-8x | | -3=(-6-7c) | | -2.5=x/2-7 | | 3x+25-x=7x+35 | | -1/7r=-1 | | 1/5x+5=19−1/2x | | 64^3m-3=4 | | Y=0.50x(20,10) | | Y=8d+7,d=5 | | 15-n=-4n-7(n-5) | | 13x-2=-32 | | 219-14x=17 |